Sukhdeep S. Dhillon
Laboratoire de Physique de l’Ecole Normale Supérieure (LPENS), Paris
Layered Controlled Terahertz Photonics with 2D Transition Metal Dichalcogenides
In this presentation, I will provide an overview of the application of two-dimensional (2D) Transition Metal Dichalcogenides (TMDs) to terahertz (THz) photonics. I will encompass the significant advancements in these 2D materials, focusing on how the achievement of high-quality, large-area growth is starting to open up novel prospects for THz physics and applications. In particular, I will concentrate on the layer controlled bandstructure of these TMD materials, which can be controlled and engineered for a wide range of physical phenomena – from semiconducting, semimetal, giant nonlinearities to ferroelectric properties – simply by controlling the number of atomic layers and the interlayer interaction. Finally, I will present some recent results on the utilization of
Group-10 2D TMDs, such as PtSe2, in the realms of nonlinear THz valleytronics and THz spintronics, demonstrating how their layered controlled electronic and photonic properties introduces novel functionalities to these domains. Lastly, I will discuss the potential of 2D materials in impacting the field of THz technology.
Mathieu Bertrand
Thales Alenia Space, Toulouse
Polarisation control in space-based Quantum Information Networks applications
Quantum Information Networks (QIN) are emerging as a way to interconnect quantum devices such as quantum computer, quantum sensors and quantum-secured terminals. These technologies already allow ground-breaking applications such as Quantum Key Distribution (QKD), and ever more powerful ones tomorrow such as blind quantum computing or networks of atomic clocks. For long distances optical connections in QIN, satellites will become mandatory as the losses are only quadratic with the altitude compared to the exponential losses experienced in optical fibres. As shown by the Chinese QUESS and Japanese SOTA missions, polarisation is a well preserved variable for space-based QIN applications. In this paper, we study polarisation control both with free-space and fibre-based technologies for on-board and ground quantum optical devices.
Christian Chardonnet
Laboratoire de Physique des Lasers - UMR7538 CNRS / Université Sorbonne Paris Nord
Le réseau de temps-fréquence REFIMEVE et son extension européenne FOREST: opportunités pour des applications en physique , communication quantique et pour le fiber sensing.
L'infrastructure de recherche REFIMEVE, réseau d'environ 5000 km s'appuyant sur le réseau de fibres optiques RENATER distribue à une trentaine d'instituts français des signaux de temps et de fréquence générés par le laboratoire national de métrologie situé au LTE (Observatoire de Paris). Fournissant les meilleurs signaux de temps et de fréquence possibles sans dégradation des performances, il ouvre la perspective de très nombreuses applications tant en recherche fondamentale qu'appliquée, en physique, astrophysique, physique des hautes énergies, en géoscience, ... ce réseau et son extension européenne à plus d'une quinzaine de pays, FOREST, offriront de très nombreuses opportunités de R&D tant pour les acteurs académiques qu'industriels.